234 research outputs found

    Adapting Planck's route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet

    Full text link
    The spin-half pyrochlore Heisenberg antiferromagnet (PHAF) is one of the most challenging problems in the field of highly frustrated quantum magnetism. Stimulated by the seminal paper of M.~Planck [M.~Planck, Verhandl. Dtsch. phys. Ges. {\bf 2}, 202-204 (1900)] we calculate thermodynamic properties of this model by interpolating between the low- and high-temperature behavior. For that we follow ideas developed in detail by B.~Bernu and G.~Misguich and use for the interpolation the entropy exploiting sum rules [the ``entropy method'' (EM)]. We complement the EM results for the specific heat, the entropy, and the susceptibility by corresponding results obtained by the finite-temperature Lanczos method (FTLM) for a finite lattice of N=32N=32 sites as well as by the high-temperature expansion (HTE) data. We find that due to pronounced finite-size effects the FTLM data for N=32N=32 are not representative for the infinite system below T≈0.7T \approx 0.7. A similar restriction to T≳0.7T \gtrsim 0.7 holds for the HTE designed for the infinite PHAF. By contrast, the EM provides reliable data for the whole temperature region for the infinite PHAF. We find evidence for a gapless spectrum leading to a power-law behavior of the specific heat at low TT and for a single maximum in c(T)c(T) at T≈0.25T\approx 0.25. For the susceptibility χ(T)\chi(T) we find indications of a monotonous increase of χ\chi upon decreasing of TT reaching χ0≈0.1\chi_0 \approx 0.1 at T=0T=0. Moreover, the EM allows to estimate the ground-state energy to e0≈−0.52e_0\approx -0.52.Comment: 17 pages, 24 figure

    Enhanced magnetocaloric effect in frustrated magnetic molecules with icosahedral symmetry

    Full text link
    We investigate the magnetocaloric properties of certain antiferromagnetic spin systems that have already been or very likely can be synthesized as magnetic molecules. It turns out that the special geometric frustration which is present in antiferromagnets that consist of corner-sharing triangles leads to an enhanced magnetocaloric effect with high cooling rates in the vicinity of the saturation field. These findings are compared with the behavior of a simple unfrustrated spin ring as well as with the properties of the icosahedron. To our surprise, also for the icosahedron large cooling rates can be achieved but due to a different kind of geometric frustration.Comment: 5 pages, 8 figures, more information at http://obelix.physik.uni-osnabrueck.de/~schnack

    Metamagnetic phase transition of the antiferromagnetic Heisenberg icosahedron

    Full text link
    The observation of hysteresis effects in single molecule magnets like Mn12_{12}-acetate has initiated ideas of future applications in storage technology. The appearance of a hysteresis loop in such compounds is an outcome of their magnetic anisotropy. In this Letter we report that magnetic hysteresis occurs in a spin system without any anisotropy, specifically, where spins mounted on the vertices of an icosahedron are coupled by antiferromagnetic isotropic nearest-neighbor Heisenberg interaction giving rise to geometric frustration. At T=0 this system undergoes a first order metamagnetic phase transition at a critical field \Bcrit between two distinct families of ground state configurations. The metastable phase of the system is characterized by a temperature and field dependent survival probability distribution.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Frustration effects in magnetic molecules

    Full text link
    Besides being a fascinating class of new materials, magnetic molecules provide the opportunity to study concepts of condensed matter physics in zero dimensions. This contribution will exemplify the impact of molecular magnetism on concepts of frustrated spin systems. We will discuss spin rings and the unexpected rules that govern their low-energy behavior. Rotational bands, which are experimentally observed in various molecular magnets, provide a useful, simplified framework for characterizing the energy spectrum, but there are also deviations thereof with far-reaching consequences. It will be shown that localized independent magnons on certain frustrated spin systems lead to giant magnetization jumps, a new macroscopic quantum effect. In addition a frustration-induced metamagnetic phase transitions will be discussed, which demonstrates that hysteresis can exist without anisotropy. Finally, it is demonstrated that frustrated magnetic molecules could give rise to an enhanced magnetocaloric effect.Comment: 6 pages, 4 figures; submitted to J. Low. Temp. Phys.; proceedings of the Sixth International Symposium on Crystalline Organic Metals, Superconductors, and Ferromagnets (ISCOM

    Are taxonomy details of relevance to ecologists? An example from microcopepods of the Red Sea

    Get PDF
    The marine microcopepod family Oncaeidae in the Red Sea has been the subject of comprehensive ecological studies over the past 15 years, providing for the first time insights into their community structure, vertical distribution and feeding ecology. Owing to taxonomic problems in species identification, however, many of the earlier ecological results were based on provisionally named species or morphotypes. A recent, ongoing taxonomic study of Red Sea Oncaeidae resulted in a considerable increase in the estimated numbers of species, since many of the species had not been described before. The present paper focuses on the potential significance of an improved taxonomic resolution of oncaeids with respect to various ecological aspects in this area, such as indicator species, community analysis and vertical distribution. The progress in our knowledge of the diversity of Red Sea Oncaeidae is summarized, including latest findings on the taxonomy and zoogeography of very small species (<0.5 mm), and the importance of sibling species in the family is pointed out. The south–north gradient in species diversity of Oncaeidae within the Red Sea appears to be greater than previously assumed, since several of the newly described species were restricted to the southern part. The number of endemic species among Red Sea oncaeids is very low, however, most of the new species being also recorded outside the Red Sea. New quantitative data on the abundance and vertical distribution of selected oncaeid siblings obtained during a recent cruise in the northern Red Sea are provided to exemplify the changes in the knowledge of oncaeid community structure attributable to the improved taxonomic resolution. The potential ecological importance of a more differentiated consideration of oncaeid species in marine microcopepod communities is discusse

    Frustration-induced exotic properties of magnetic molecules

    Full text link
    Geometric frustration of interacting spin systems is the driving force of a variety of fascinating phenomena in low-dimensional magnetism. In this contribution I will review recent results on frustration-induced effects in magnetic molecules, i.e. zero-dimensional magnetic systems, as well as in a recently synthesized frustrated molecule-based spin tube, i.e. a one-dimensional spin system.Comment: 5 pages, 9 eps figures; proceedings of the symposium on "Spin- and charge-correlations in molecule-based materials", October 2005, Koenigstein (Taunus), German
    • …
    corecore